Mixotrophic cultivation of C. vulgaris using sweet sorghum bagasse to reduce cost and enhance sustainability

Algae Biomass Summit 2020

Introduction

- Mixotrophy is a strategy to enhance the growth rate and product yield in microalgae.
- It is the synergy between autotrophy and heterotrophy.
- However, sustainable mixotrophic cultivation of microalgae requires uninterrupted supply of organic carbon.
- Recovering waste carbon from agro-industrial waste could serve as organic carbon supply.
- Sweet sorghum is a low-cost non-food energy crop that can simultaneously produces sugar juice and bagasse.
- Sweet sorghum bagasse (SSB) is rich in cellulosic and hemicellulosic sugars (glucose and xylose) that can be obtained via pretreatment and enzymatic hydrolysis and then can be fed to algae.

SSB conversion to sugars

1. Initial processing 2. Pre-treatment 3. Enzymatic hydrolysis

E. Lo, L. Brabo-Catala, I. Dogaris, E.M. Ammar, G.P. Philippidis, Biochemical conversion of sweet sorghum bagasse to succinic acid, J₃ Biosci. Bioeng., 129 (2020), pp. 104-109.

Selection of microalgal strain

SOUTH FLORIDA Optimizing key cultivation parameters

BBD Design		Coded level and concentration		
Parameter	Label	-1	0	1
O.D. _{750nm}	OD	0.2	0.6	1
Salinity (%)	S	0	1.5	3
SSB Hydrolysate (%)	Н	25	62.5	100

Maximized total lipid productivity (mg/L/D)

=
$$115.2 + 97.7[OD] - 1.534[H] - 12.47[S] - 61.9[OD]^2$$

+ $0.00768[H]^2 - 3.77[S]^2 - 0.016[OD][H] + 7.31[OD][S]$
+ $0.0821[H][S]$

Optimized values:

 $O.D._{750nm}$ = 0.789, Salinity = 0 % and SSB hydrolysate = 25 %

Hydrolysate (%) vs O.D.

Salinity (%) vs Hydrolysate (%)

Salinity (%) vs O.D. 5

Cultivation results

SÖUTH FLORIDA Changes in pH, nitrate, and phosphate

Sugar consumption

SOUTH FLORIDA Changes in cellular composition

Changes in photosynthetic pigments

Temporal changes in FAME profile

Conclusions and Future directions

- Mixotrophic cultivation of *Chlorella vulgaris* using sweet sorghum bagasse (SSB), a low-cost renewable agricultural residue
- SSB hydrolysate boosted both lipid and carbohydrate productivity.
- Microalgae metabolism switches from protein synthesis to carbohydrate accumulation during initial nitrogen deprivation.
- However, prolonged nitrogen deprivation triggers lipid accumulation in the microalgae.
- Variations in FAME composition were observed with decrease in SFA and increase in MUFA and PUFA during growth.
- Future studies will focus on scale-up studies in PBR and deciphering the molecular mechanism for glucose uptake by *C. vulgaris* under mixotrophic and heterotrophic conditions.

Thank you

Email: nehaarora@usf.edu

